Rule of Assumptions (A) [p. 9]	 Any wff φ may be introduced at any stage of a proof given itself as an assumption of the proof. ** Assumption = wff included in a proof but not derived In the Proof System: we write the wff down on a new line, write A to the right of it, and put its own line number to the left of it (where we keep track of assumptions)
<i>Modus (Ponendo) Ponens</i> (MPP) [p. 9]	Given ϕ and $(\phi \rightarrow \gamma)$, we may derive γ . Conclusion γ depends on any assumptions on which ϕ or $(\phi \rightarrow \gamma)$ depends. In the Proof System: we write the wff γ down on a new line, write "MPP" to the right of it along with the line numbers corresponding to wffs ϕ and $(\phi \rightarrow \gamma)$. To the left, we write down all of the assumptions that ϕ or $(\phi \rightarrow \gamma)$ depends on.
<i>Modus (Tollendo) Tollens</i> (MTT) [p. 12]	Given $-\gamma$ and $(\varphi \rightarrow \gamma)$, we may derive $-\varphi$. Conclusion $-\varphi$ depends on any assumptions on which $-\gamma$ or $(\varphi \rightarrow \gamma)$ depends.
Double Negation (DN) [p. 13]	Given wff ϕ , we may derive ϕ . Given wff ϕ , we may derive ϕ . In either case, the conclusion depends on the same assumptions as the premise.
<i>Conditional Proof</i> (CP) [p. 14]	Given a proof of γ resting upon φ as an assumption, we may derive $(\varphi \to \gamma)$ on the remaining assumptions (if any).
&-Introduction (&I) [p. 19]	Given φ and γ , we may derive $(\varphi \& \gamma)$. Conclusion $(\varphi \& \gamma)$ depends on any assumptions on which φ or γ depends.
&- <i>Elimination</i> (&E) [p. 20]	Given $(\varphi \& \gamma)$, we may derive either φ or γ separately. In either case, the conclusion depends on the same assumptions as the premise.
∨- <i>Introduction</i> (∨I) [p. 22]	Given either ϕ or γ separately, we may derive $(\phi \lor \gamma)$. In either case, the conclusion depends on the same assumptions as the premise.
∨ <i>-Elimination</i> (∨E) [p. 22]	Given $(\phi \lor \gamma)$, together with a proof of λ resting upon ϕ as an assumption and a proof of λ resting upon γ as an assumption, we may derive λ . Conclusion λ depends on any assumptions on which $(\phi \lor \gamma)$ depends plus those on which λ depends in its derivation from ϕ (apart from ϕ), plus those on which λ depends in its derivation from γ , (apart from γ).
Reductio ad Absurdum (RAA) [p. 26]	Given a proof of $(\gamma \& - \gamma)$ resting upon ϕ as an assumption, we may derive $-\phi$ as a conclusion resting on the remaining assumptions (if any).